D-T etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster
D-T etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster

14 Ekim 2020 Çarşamba

D-D ve D-T reaksiyonlarında üretilen nötronlar

D-D ve D-T reaksiyonlarında üretilen nötronların sağladığı ısıtma esas enerji üretim yöntemidir. Bu nötronların sağladığı ısı, reaktörlerin iç duvarlarındaki seramik kaplamalar ile yalıtılır. Elektro mıknatısları korumak için ayrı sıvı-helyum veya sıvı-nitrojen katmanları mevcuttur. Şu anda farklı ülkelerde işler halde 30 kadar deneysel tokamak reaktöründe araştırmalar sürmektedir. 

En büyük ve en ünlü olan proje Joint European Torus (JET), İngiltere’de 1984’ten beri aktif araştırmaların en büyük parçalarından biridir. Bu reaktörün enerji üretim rekoru, 1997’de 24 MW enerji girdisi ile, 16 MW füzyon enerjisi elde etmesidir. 2014’te Avrupa Komisyonu’nun imzaladığı 5 yıllık uzatma kontratı ve sağladığı 283 milyon Euro’luk ödenek ile bilim insanları ve mühendisler yeni bir rekor kırmaya hazırlanmaktadırlar. JET projesinden edinilen bilgi birikimi ve deneyim ile 2019’da tamamlanacak olan“International Thermonuclear Experimental Reactor” ITER, Avrupa Birliği, Hindistan, Japonya, Rusya, Çin, Amerika ve Güney Kore’nin katılımıyla bir mega projeye dönüşmüştür. 50MW enerji girdisiyle 500MW füzyon enerjisi üretilmesi planlanmaktadır. 

ITER kompleksinin yapımına 2013’te Fransa’da başlanmış ve inşa ücreti şimdiden planlanan ücretin üç katına çıkarak 16 milyar dolar ile tavan yapmıştır (Bu ücret Türk silahlı kuvvetlerinin yıllık askeri harcamasına oldukça yakındır). 2019’da tamamlandıktan sonra ilk plazma deneyleri 2020’de başlayacak ve 2027’de D-T füzyon deneyleri ile devam edilecektir. Böylece ITER, “füzyon 10 yıl uzakta” muhabbetlerini sonlandıracaktır... ITER’i takip ederek 2033’te tamamlanacak olan DEMO santrali de tokamak modelini kullanacaktır.

 


2-4 GW arası enerji üretimi ile günümüz nükleer santralleri ile eşdeğer olacaktır. Bu projeler yanında Güney Kore, K-STAR projesi ile 2008’de ilk plazma üretimini gerçekleştirdi ve şu anda ITER için bir test yatağı olarak kullanılıyor. K-STAR’ı takiben 2037’de hayata geçmesi planlanan K-DEMO isimli proje de, 2033’te tamamlanacak DEMO ile bağlantılı halde geliştirilecek.

Füzyon Araştırmalarının Reaksiyonlar

 D-T [Döteryum (2H) – Trityum (3H)] Çevrimi
İşte şimdi dünyada kullanabileceğimiz ve üzerinde birçok araştırma-geliştirme yapılan bir çevrimden bahsedebiliriz. D-T en düşük enerjiye ihtiyaç duyan, en kolay reaksiyon tipidir. Yakıtlara bir bakalım;

Döteryum deniz suyunda metreküp başına 30 gram kadar bulunan oldukça yaygın bir izotoptur. Sadece Dünya’daki döteryum rezervlerini binlerce yıl füzyon reaksiyonlarında kullanabileceğimiz gibi, uzayda da diğer gezegenlerde, uydularda ve kuyruklu yıldızlarda da bolca bulunur bu hidrojen izotopu. Trityum yaklaşık 12 yıl yarı ömrü olan radyoaktif bir hidrojen izotopudur. Doğada fazla bulunmaz ve kozmik ışınların atmosferimiz ile etkileşimi sırasında üretilir. Şu anki teknolojimiz ile normal nükleer reaktörlerde de trityum üretimi yapılmaktadır. Yakın gelecekte ise füzyon esnasında açığa çıkan nötronların Lityum elementini bombalaması ile Trityum üretimi yapılacaktır (Dünya’daki bilinen Lityum rezervleri en az bin yıl yetecek miktardadır). D-D çevrimlerinde de trityum üretimi yapılabilir.

D-T Reaksiyonları şu şekilde gerçekleşir; 2H + 3H = 4He (3.517 MeV) + n (14.069 MeV)

Reaksiyon sonucunda açığa çıkan enerjinin 20%’si 3.5 MeV değerinde Helyum izotopu (alfa parçacığı) ve 80%’i 14.1 MeV değerinde nötrondur.

D-T, Tokamak tipi reaktörlerde kullanıma en uygun reaksiyon tipidir. Az sonra anlatacağımız D-D reaksiyonuna kıyasla daha yoğun oranda gerçekleşir ve reaksiyon oranının tepe noktası olan 13,6 keV enerji ile D-D’den daha düşüktür. Avantajları arasında diğer füzyon reaksiyonları gibi temiz ve güvenli olması yanısıra, teknolojik ve mühendislik olarak kolay olan bu döngünün dezavantajları şunlardır; Daha öncede yazdığımız gibi Trityum üretimi gerektirmektedir, bu sebeple “Lityum örtüsü” denen bir tabaka, reaktörde üretilen nötronlar ile bombalanarak Trityum üretecektir. Bu yöntemin de ayrı zorlukları vardır. Bir diğer dezavantajı da, nötronlar %80 enerji taşıyacağı için reaksiyonun enerjisinin beşte biri plazma içerisinde kalacaktır. Bu da “ateşlemenin” sürekliliğini zorlaştırmaktadır.



Muz Kabukları Ayakkabıları parlaktır ve bakım yapar. – Toplum ve Bitkisel Tedavi

Muz Kabukları Ayakkabıları parlaktır ve bakım yapar. – Toplum ve Bitkisel Tedavi : Dolayısıyla muz kabukları ayakkabılarınız için harika bir...