FÜZYON etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster
FÜZYON etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster

14 Ekim 2020 Çarşamba

Hapislemeli Füzyon (Inertial Confinement Fusion – ICF)

Hapislemeli Füzyon (Inertial Confinement Fusion – ICF)
Bu yöntem ile yakıt yüksek enerjili lazerler ile ısıtılır ve sıkıştırılır. Alttaki şekilde gördüğünüz gibi, ısıtılan dış katman dışarı doğru genişlerken içeriye doğru şok dalgası göndererek yakıtı sıkıştırır. Bu sıkıştırma yeterli güçte olursa füzyon reaksiyonları oluşur. Bu reaksiyonlar yakıtın geri kalanını da füzyon reaksiyonlarına sokabilir. Böylesi yakıt parçaları yaklaşık 10 miligram yakıt içerir ve bu 10 miligram yakıt bir varil petrol ile aynı miktarda enerji açığa çıkarır(159.000.000 miligram petrol = 10 miligram D-T). ICF, manyetik hapislemeye göre daha yeni bir alandır ve 1970’lerde öne sürülmüştür. Öne sürüldüğü yıllardan bu yana reaktör modelleri büyümüş ve gelişmiştir. 

Bugün bu yöntemin en önemli örneği ABD’deki National Ignition Facility’de (NIF) bulunan reaktördür. Bu yöntemin uygulanışında; hedefe gönderilen enerji seviyesi, şok dalgaları ile içe çöken yakıtın simetrisini korumak ve maksimum yoğunluğa erişilmeden yakıtın fazla ısınması gibi birçok problemin geçen on yıllar içerisinde az ya da çok üstesinden gelinmiş olsa bile, hedefe gönderilen lazerler arasındaki güç eşitsizliğinden doğan Rayleigh-Taylor instabilitesi bugün aşılması gereken en önemli sorundur. Bu yöntemin en büyük temsilcisi NIF, 2009’da tamamlanmış ve deneylere 2010’da başlamıştır. NIF reaktöründe, 192 yüksek enerjili lazeri tek bir noktada kesiştirerek 500 terawattlık bir enerji odağı yaratma amacına 2012’de erişilmiş olsa da, ateşleme (ignition) sağlanamamıştır. Ancak 29 Eylül 2013’te 5×1015 nötron salınımı ile önceki deneylerden 75% daha fazla nötron üretilmiş, Alfa ısıtması (füzyon sonucu oluşan helyum izotoplarının salınımı) sağlanmış ve reaksiyon, ateşleme için harcanandan daha fazla enerji üreterek tarihi bir rekor kırmıştır. Ancak bu reaksiyon için kullanılan lazerlerin enerjisinin bir kısmı yakıtı tutan “hohlarum” denen dış tabaka tarafından soğurulmuştur. 

Yani lazerleri ateşlemek için daha yüksek enerji harcanmış, ancak yakıta ulaşan soğurulmuş enerji daha düşük olmuştur. Yakıt bu soğurulmuş enerjiden daha fazla füzyon enerjisi açığa çıkarmıştır. Günümüzde NIF’de, ödeneğin kesilmesi ile birlikte füzyon yerine materyal araştırmalarına odaklanılmaktadır. NIF dışında, Fransa’daki Laser Mégajoule tesisi de Ekim 2014’te ICF deneylerine başlamıştır. Japonya’da Osaka Üniversitesi de GEKKO XII ICF lazer aygıtıyla 1983’ten beri ICF testleri sürdürmektedir.



FÜZYON REAKSİYONLARI, Muon katalize Füzyon

Muon katalize Füzyon / Soğuk Füzyon Önce Muon dan bahsedelim. Muon bir elektrondan 200 kat daha ağır bir parçacıktır ve 2.2 milisaniye içinde başka parçacıklara bozunur. Bir atom çekirdeğinin çevresinde elektron yerine muon bulunursa yörüngesi elektronun 1/200’ü kadar olur. Burada bozunan muon, coulomb bariyerini zayıflatarak füzyonun daha düşük sıcaklıklarda gerçekleşmesini sağlar. 
Hatta ihtiyaç duyulan sıcaklığı öylesine düşürür ki oda sıcaklığında dahi reaksiyon gerçekleşebilir. Öyle ki, bazı araştırmalard yakıt -270 dereceye kadar soğutulup kullanmaktadırlar. Kulağa güzel gelse de tabiki sorunları vardır, onlardan da bahsedelim: Alfa Yapışması (Alpha Sticking): Alfa parçacığı dediğimiz helyum, 2 proton ve 2 nötron içerir, yani yükü +2dir. Protonların yükü, -1 yüklü muonu kendilerine çeker ve bu şartlar altında proton füzyonu gerçekleşmeyeceği için Muon 2.2 milisaniye sonra bozunduğunda reaksiyon gerçekleşmez. Boron-11 kullandığımızda ise muon, boron çevresinde bulunan elektronlar sebebiyle etkisini büyük ölçüde kaybeder bu sebeple muon katalizasyonu ağır atomlarda işe yaramaz. Muon katalize yönteminden daha etkin faydalanmak için Muon üretiminin daha verimli bir yolu bulunmalı. Şu anda bir Muon üretimi için 6 GeV enerji gerekmektedir. Bu enerji, muon katılmış bir füzyon reaksiyonundan açığa çıkan enerjiden daha fazladır. 

Muon üretimi için kat kat verimli bir yöntem bulunmadığı sürece oda sıcaklığında çalışan soğuk füzyon reaktörleri yapmak şimdilik ekonomik değildir. Ama muon üretiminin ,ekonomik ve basit bir yöntemi geliştirilirse evlerimizi ve otomobillerimizi çalıştıracak “Mr.Fusion” gerçek olabilir.



FÜZYON REAKSİYONLARI, p-11B, Proton – Boron-11 çevirimi

 p-11B,Proton – Boron-11 çevirimi
p-11B uzak gelecek için hedeflenen bir reaksiyondur, şu anda ve yakın gelecekte mümkün değildir. Anötronik füzyon amaçlanıyor ise ki er ya da geç füzyon teknolojisinin nihai hedefi olacak, proton/boron reaksiyonu da nihai hedeftir. Bu arada Boron, bildiğimiz “Bor” madenidir.

1H + 11B = 3x(4He) + (8.7MeV)

Bu reaksiyonda bir proton, Boron-11 ile birleşerek, Karbon-12 oluşturur. Karbon-12 ise üç helyum-4 olarak bozunur. Bu reaksiyon fisyon gibi gözükse de Helyum-4 evrendeki en kararlı izotoplardan birisidir. D-He3 reaksiyonundan dahi çok daha az nötron salınımı ile p-11B neredeyse tamamen temizdir. 0.001% nötron salınımı ile her bin reaksiyonda sadece 1 nötron üretilir. 

Anötronik bir reaksiyon verimliliğine sahip olmasının yanısıra, yakıtı da oldukça yaygın ve boldur. Tek (ve malesef büyük) dezavantajı, reaksiyon oranının tepe noktasına 123 keV’de ulaşması. Yani gerekli olan sıcaklık bir D-D veya D-T reaksiyonunda ihtiyaç duyulandan 10 kat fazlası olan 1 milyar santigrat dereceye yakındır. Enerji hapsedilmesini sağlayacak manyetik alanlar da doğal olarak 500 kat daha iyi olmak zorundadır. Tokamak ve lazer odaklı reaktör modellerinin limitleri dışında olan bu reaksiyon için daha radikal farklılıklar gösteren Polywell ve Dense Plasma Focus sıkıştırma yöntemleri düşünülmektedir.



FÜZYON REAKSİYONLARI D-D Döteryum (2H) – Döteryum (2H) Çevrimi

FÜZYON REAKSİYONLARI D-D [Döteryum (2H) – Döteryum (2H)] Çevrimi
Sadece döteryum kullanan bu reaksiyon, edinimi zor olan başka bir yakıt gerektirmemesi ile öne çıkan bir diğer araştırma konusudur. D-D reaksiyonu, sürdürülebilir “ateşleme” için gereken reaksiyon oranının tepe noktasına 15 keV değerinde enerji ile ulaşır. Bu D-T’den daha yüksek ve dolayısıyla daha zorludur. Bu reaksiyon eşit oranlarda iki farklı ürün verir;

50%: 2H + 2H = 3H [Trityum] (1.01 MeV) + 1H [p+] (3.02 MeV)

50%: 2H + 2H = 3He (0.82 MeV) + n (2.45 MeV)

Hydrogen_Deuterium_Tritium
Hidrojen ile, onun izotopları olan (fazladan bir ve iki nötrona sahip) döteryum ve trityum.
Reaksiyon sonucu üretilen Trityum ve Helyum-3, geri dönüştürülerek yüklü parçacık miktarı arttırılıp nötron miktarı azaltılacaktır. Şöyle ki; reaksiyon sonucu oluşan Trityum toplanabilirse, aksi taktirde oluşacak nötron salınımı oldukça düşük olur ve reaktör D-He3 reksiyonu devam ettirebilir. Bunun yanında Trityum D-T reaksiyonlarında kullanılır veya bozunup Helyum-3’e dönüşünce D-He3 reaksiyonlarında da kullanılabilir.

Anötronik Reaksiyonlar
Aşağıdaki reaksiyon çeşitleri nötron salınımı içermez ve çok daha verimlilerdir ancak zorlukları da bununla doğru orantılı artmaktadır. En büyük avantajları nötron kalkanlaması gerektirmemeleri ve direkt enerji dönüşümünü mümkün kılmalarıdır.



Füzyon Araştırmalarının Reaksiyonlar

 D-T [Döteryum (2H) – Trityum (3H)] Çevrimi
İşte şimdi dünyada kullanabileceğimiz ve üzerinde birçok araştırma-geliştirme yapılan bir çevrimden bahsedebiliriz. D-T en düşük enerjiye ihtiyaç duyan, en kolay reaksiyon tipidir. Yakıtlara bir bakalım;

Döteryum deniz suyunda metreküp başına 30 gram kadar bulunan oldukça yaygın bir izotoptur. Sadece Dünya’daki döteryum rezervlerini binlerce yıl füzyon reaksiyonlarında kullanabileceğimiz gibi, uzayda da diğer gezegenlerde, uydularda ve kuyruklu yıldızlarda da bolca bulunur bu hidrojen izotopu. Trityum yaklaşık 12 yıl yarı ömrü olan radyoaktif bir hidrojen izotopudur. Doğada fazla bulunmaz ve kozmik ışınların atmosferimiz ile etkileşimi sırasında üretilir. Şu anki teknolojimiz ile normal nükleer reaktörlerde de trityum üretimi yapılmaktadır. Yakın gelecekte ise füzyon esnasında açığa çıkan nötronların Lityum elementini bombalaması ile Trityum üretimi yapılacaktır (Dünya’daki bilinen Lityum rezervleri en az bin yıl yetecek miktardadır). D-D çevrimlerinde de trityum üretimi yapılabilir.

D-T Reaksiyonları şu şekilde gerçekleşir; 2H + 3H = 4He (3.517 MeV) + n (14.069 MeV)

Reaksiyon sonucunda açığa çıkan enerjinin 20%’si 3.5 MeV değerinde Helyum izotopu (alfa parçacığı) ve 80%’i 14.1 MeV değerinde nötrondur.

D-T, Tokamak tipi reaktörlerde kullanıma en uygun reaksiyon tipidir. Az sonra anlatacağımız D-D reaksiyonuna kıyasla daha yoğun oranda gerçekleşir ve reaksiyon oranının tepe noktası olan 13,6 keV enerji ile D-D’den daha düşüktür. Avantajları arasında diğer füzyon reaksiyonları gibi temiz ve güvenli olması yanısıra, teknolojik ve mühendislik olarak kolay olan bu döngünün dezavantajları şunlardır; Daha öncede yazdığımız gibi Trityum üretimi gerektirmektedir, bu sebeple “Lityum örtüsü” denen bir tabaka, reaktörde üretilen nötronlar ile bombalanarak Trityum üretecektir. Bu yöntemin de ayrı zorlukları vardır. Bir diğer dezavantajı da, nötronlar %80 enerji taşıyacağı için reaksiyonun enerjisinin beşte biri plazma içerisinde kalacaktır. Bu da “ateşlemenin” sürekliliğini zorlaştırmaktadır.



FÜZYONDAN ELEKTRİK Üretilmesi

Dünyada Arge çalışmalarının bir çoğu teknolojik kolaylık sebebiyle yüklü parçacıklarla birlikte, yüksek enerjili nötronlar üreten, hidrojen izotopu reaksiyonları üzerinedir. Böylece Elektrik üretimi de bu yüklü parçacıklar ve nötronlar sayesinde gerçekleşir.
Termal Dönüşüm: Füzyon sırasında muazzam miktarda ısı üretilir, bununla geleneksel yöntemler ile buhar türbinleri ile elektriğe çevirebiliriz. Şimdiki Dünya’da ki elektriğin 80%i böyle buhar türbinleri kullanan santrallerde üretilir. Bu denenmiş ve uzmanlaşılmış bir alandır. Ancak ısıyı elektriğe dönüştürmenin ancak %33-50 arası bir verimliliği vardır. Direkt Dönüşüm: Hareket halindeki yüklü parçacıklardan direkt olarak elektrik üretmek anlamına gelir. Yani soğutucu bir sıvı ya da gazı ısıtarak buhar türbini yolu ile elektrik üretme aşaması yoktur ve termal dönüşümün düşük verimliliğine kıyasla 90% ve üstü verimlilik sağlar. Direkt dönüşüm sistemlerinden en verimli şekilde faydalanmak için nötron üretimi düşük olan reaksiyonlar gerekmektedir. 


Çünkü nötronlar yüksüz oldukları için barındırdıkları enerjiyi direkt dönüşümde kullanamayız. Aşağıda reaksiyon çeşitlerinde bahsedeceğimiz gibi nötron üretimi düşük olan reaksiyonlar mevcuttur ancak, enerji ihtiyaçları çok yüksek olduğu için yakın zamanda geliştirilmeleri oldukça zordur.



FÜZYON NEDİR.

Füzyon reaksiyonları, hafif elementlerin Coulomb gücü denen birbirlerini itme eğilimini, “güçlü nükleer kuvvet” ile aşarak bir araya gelmelerine ve başka bir atom çekirdeği oluşturup; bazen nötron ve çok yüksek miktarda enerji açığa çıkarmasına denir. 
Doğanın 4 ana gücünden biri olan bu güçlü nükleer kuvvetin, atom çekirdeklerini birbirinden uzak tutan elektriksel itmeye üstün gelmesi için, çekirdeklerin ısı ve/veya basınç etkisi ile birbirlerine oldukça yaklaşması gerekmektedir. 


 Füzyon Reaktör / FusionReaction 
Füzyon santrallerinde gerçekleşen temel füzyon reaksiyonu. Burada Hidrojenin izotopları olan döteryum ve trityum birleşerek helyum atomu oluşturur. Bu sırada bir nötron ve büyük miktarda enerji yayınlanır. Günümüzde kullanılan fisyon bazlı nükleer enerji bile fosilden milyonlarca kat daha fazla enerji üretirken, ilk nesil ticari füzyon reaktörleri bunun 3 – 4 katını üreteceklerdir. 

Örneğin 1GW’lık bir kömür santrali yılda 1.5 ile 2.5 milyon ton kömür yakarken, eşdeğer ilk nesil bir füzyon santrali sadece birkaç yüz kilogram yakıt harcayacaktır. Kömür son derece zehirli gazları atmosfere salarken füzyon reaksiyonlarının zararlı bir artık maddesi olmayacaktır. Sonuçta yıldızların kalbindeki bu enerji, gezegenimizdeki bütün enerji ihtiyacını çözüme kavuşturabilir.

Muz Kabukları Ayakkabıları parlaktır ve bakım yapar. – Toplum ve Bitkisel Tedavi

Muz Kabukları Ayakkabıları parlaktır ve bakım yapar. – Toplum ve Bitkisel Tedavi : Dolayısıyla muz kabukları ayakkabılarınız için harika bir...