14 Ekim 2020 Çarşamba

D-D ve D-T reaksiyonlarında üretilen nötronlar

D-D ve D-T reaksiyonlarında üretilen nötronların sağladığı ısıtma esas enerji üretim yöntemidir. Bu nötronların sağladığı ısı, reaktörlerin iç duvarlarındaki seramik kaplamalar ile yalıtılır. Elektro mıknatısları korumak için ayrı sıvı-helyum veya sıvı-nitrojen katmanları mevcuttur. Şu anda farklı ülkelerde işler halde 30 kadar deneysel tokamak reaktöründe araştırmalar sürmektedir. 

En büyük ve en ünlü olan proje Joint European Torus (JET), İngiltere’de 1984’ten beri aktif araştırmaların en büyük parçalarından biridir. Bu reaktörün enerji üretim rekoru, 1997’de 24 MW enerji girdisi ile, 16 MW füzyon enerjisi elde etmesidir. 2014’te Avrupa Komisyonu’nun imzaladığı 5 yıllık uzatma kontratı ve sağladığı 283 milyon Euro’luk ödenek ile bilim insanları ve mühendisler yeni bir rekor kırmaya hazırlanmaktadırlar. JET projesinden edinilen bilgi birikimi ve deneyim ile 2019’da tamamlanacak olan“International Thermonuclear Experimental Reactor” ITER, Avrupa Birliği, Hindistan, Japonya, Rusya, Çin, Amerika ve Güney Kore’nin katılımıyla bir mega projeye dönüşmüştür. 50MW enerji girdisiyle 500MW füzyon enerjisi üretilmesi planlanmaktadır. 

ITER kompleksinin yapımına 2013’te Fransa’da başlanmış ve inşa ücreti şimdiden planlanan ücretin üç katına çıkarak 16 milyar dolar ile tavan yapmıştır (Bu ücret Türk silahlı kuvvetlerinin yıllık askeri harcamasına oldukça yakındır). 2019’da tamamlandıktan sonra ilk plazma deneyleri 2020’de başlayacak ve 2027’de D-T füzyon deneyleri ile devam edilecektir. Böylece ITER, “füzyon 10 yıl uzakta” muhabbetlerini sonlandıracaktır... ITER’i takip ederek 2033’te tamamlanacak olan DEMO santrali de tokamak modelini kullanacaktır.

 


2-4 GW arası enerji üretimi ile günümüz nükleer santralleri ile eşdeğer olacaktır. Bu projeler yanında Güney Kore, K-STAR projesi ile 2008’de ilk plazma üretimini gerçekleştirdi ve şu anda ITER için bir test yatağı olarak kullanılıyor. K-STAR’ı takiben 2037’de hayata geçmesi planlanan K-DEMO isimli proje de, 2033’te tamamlanacak DEMO ile bağlantılı halde geliştirilecek.

FÜZYON REAKSİYONLARI, Tokamak Reaktörü

Tokamak, kontrollü termonükleer füzyon araştırmalarında en çok tercih edilen ve araştırılan modeldir. Bu reaktörlerde manyetik alanlar, reaktör etrafına eşit aralıklarla yerleştirilmiş toroidal bobinler tarafından üretilir ve bunları dik açıyla kesen poloidal bobinler tarafından helikal bir hareket yönü verilir. Bu tasarım 1950’lerde Sovyet bilim insanları Igor Tamm veAndrei Sakharov’un ürünüdür. Alcator_C-Mod_interior Bir tokamak reaktörü. Tokamak reaktörlerindeki en büyük problem, plazmayı ısıtıp füzyon reaksiyonlarını kendi kendini besleyecek enerjiyi üretecek verimliliğe getirmektir. Bu yaklaşık 100 milyon santigrat derecede mümkündür. Şu anki metotlar ile Ohmic ısıtma (elektrik akımları ile ısıtma tekniği)20-30 milyon santigrat derece sıcaklık sağlar. Daha yüksek sıcaklıklar için, plazma halindeki yakıt yüksek enerjili nötr atomlar ile bombalanır, manyetik sıkıştırma arttırılır ve radyo dalgaları kullanılır.


 

Kütle Çekimsel Hapisleme FÜZYON REAKSİYONLARI

“Füzyon enerjisi 20 yıl ötede”, “10 yıl sonra Füzyon” gibi başlıklar neredeyse 50 yıldır gazeteleri, haberleri süslüyor. Kimi çevreler için bu artık bir espri kaynağı olmuş durumda. Evet füzyon ile henüz verimli şekilde, harcanandan daha fazla enerji üretemiyoruz ama füzyon reaksiyonları yaratabiliyoruz 
Avrupa Birliği, Amerika, Rusya, Japonya, Çin, Brezilya, Kanada ve Güneş Kore’deki çok sayıda füzyon reaktöründe araştırma ve geliştirme çalışmaları yapılıyor. İlk füzyon araştırmaları ABD ve Sovyetler’in nükleer silah araştırmaları ile beraber yürütüldü ve 1958’de Cenevreki “Atoms for Peace” konferansına kadar gizli kaldı. Birçok ulus uzun yıllar kendi başlarına füzyon çalışmalarını yürütmüş olsa da, artan araştırma masrafları ve kullanılan aygıtların karmaşıklığı uluslararası işbirliğini zorunlu kılmıştır. maintenance_du_tokamak Son 50 yıldır, çok sayıda ülkede, binlerce bilim insanı füzyon reaktörleri üzerinde çalışıyor. Günümüzde bir çok farklı metot ile deneylerini sürdüren araştırma tessisleri ve reaktörler mevcuttur, biraz da metotlardan ve önemli arge çalışmalarından bahsedelim. Kütleçekimsel Hapislemeli Füzyon (Gravitational Confinement Fusion – GCF) Yıldızlarda füzyon reaksiyonları oluşmasını sağlayan şeydir kütleçekimsel hapisleme. Bunu yapay olarak yaratmanın teorik veya pratik bir yolunu henüz bilmiyoruz. Doğada dahi füzyon reaksiyonlarının oluşması için yıldızlar en az 75 Jüpiter kütlesi alt sınırında olmak zorundadır. 
13 Jüpiter kütleli kahverengi cücelerde de döteryum füzyonu ve 65 jüpiter kütleli olanlarda da lityum füzyonu gerçekleşebileceğini bildiğimiz için kütleçekimsel hapislemeyi sadece izlemekle yetinebiliriz. Not: Kahverengi cücelerde bu reaksiyonlar çok nadir ve çok az miktarda gerçekleşir. Yani asla bu cisimleri ısıtıp parlatacak kadar değildir. Manyetik Hapislemeli Füzyon (Magnetic Confinement Fusion – MCF) Bu yöntem ile yüzlerce metreküp yakıt (birçok araştırmada tercihen D-T) manyetik alanlar ile, çok daha küçük bir alana sıkıştırılır. Bunun için manyetik alanlar idealdir çünkü iyonlar ve elektronlar yüklü parçacıklar olduklarından manyetik alanları takip edeceklerdir. 
Buradaki esas amaç, parçacıkların reaktör duvarlarıyla temas edip ısı kaybetmelerini ve yavaşlamalarını önlemektir. Zaten manyetik alanlar ile korunmayan hiç bir malzeme füzyon sıcaklıklarına dayanamaz. Toroid denen donut biçimli reaktör tasarımı manyetik alanlar için en verimli olanıdır, böyle reaktörlerde plazma, spiral yollar izleyen manyetik alanlar ile hapsedilir. Aşağıda Toroid biçimli reaktörlerin üç ana modeli olan Tokamak, Stellarator, Reversed Field Pinch (RFP) ve birkaç diğer MCF modelinden bahsedeceğiz.

FÜZYON REAKSİYONLARI, Muon katalize Füzyon

Muon katalize Füzyon / Soğuk Füzyon Önce Muon dan bahsedelim. Muon bir elektrondan 200 kat daha ağır bir parçacıktır ve 2.2 milisaniye içinde başka parçacıklara bozunur. Bir atom çekirdeğinin çevresinde elektron yerine muon bulunursa yörüngesi elektronun 1/200’ü kadar olur. Burada bozunan muon, coulomb bariyerini zayıflatarak füzyonun daha düşük sıcaklıklarda gerçekleşmesini sağlar. 
Hatta ihtiyaç duyulan sıcaklığı öylesine düşürür ki oda sıcaklığında dahi reaksiyon gerçekleşebilir. Öyle ki, bazı araştırmalard yakıt -270 dereceye kadar soğutulup kullanmaktadırlar. Kulağa güzel gelse de tabiki sorunları vardır, onlardan da bahsedelim: Alfa Yapışması (Alpha Sticking): Alfa parçacığı dediğimiz helyum, 2 proton ve 2 nötron içerir, yani yükü +2dir. Protonların yükü, -1 yüklü muonu kendilerine çeker ve bu şartlar altında proton füzyonu gerçekleşmeyeceği için Muon 2.2 milisaniye sonra bozunduğunda reaksiyon gerçekleşmez. Boron-11 kullandığımızda ise muon, boron çevresinde bulunan elektronlar sebebiyle etkisini büyük ölçüde kaybeder bu sebeple muon katalizasyonu ağır atomlarda işe yaramaz. Muon katalize yönteminden daha etkin faydalanmak için Muon üretiminin daha verimli bir yolu bulunmalı. Şu anda bir Muon üretimi için 6 GeV enerji gerekmektedir. Bu enerji, muon katılmış bir füzyon reaksiyonundan açığa çıkan enerjiden daha fazladır. 

Muon üretimi için kat kat verimli bir yöntem bulunmadığı sürece oda sıcaklığında çalışan soğuk füzyon reaktörleri yapmak şimdilik ekonomik değildir. Ama muon üretiminin ,ekonomik ve basit bir yöntemi geliştirilirse evlerimizi ve otomobillerimizi çalıştıracak “Mr.Fusion” gerçek olabilir.



FÜZYON REAKSİYONLARI, p-11B, Proton – Boron-11 çevirimi

 p-11B,Proton – Boron-11 çevirimi
p-11B uzak gelecek için hedeflenen bir reaksiyondur, şu anda ve yakın gelecekte mümkün değildir. Anötronik füzyon amaçlanıyor ise ki er ya da geç füzyon teknolojisinin nihai hedefi olacak, proton/boron reaksiyonu da nihai hedeftir. Bu arada Boron, bildiğimiz “Bor” madenidir.

1H + 11B = 3x(4He) + (8.7MeV)

Bu reaksiyonda bir proton, Boron-11 ile birleşerek, Karbon-12 oluşturur. Karbon-12 ise üç helyum-4 olarak bozunur. Bu reaksiyon fisyon gibi gözükse de Helyum-4 evrendeki en kararlı izotoplardan birisidir. D-He3 reaksiyonundan dahi çok daha az nötron salınımı ile p-11B neredeyse tamamen temizdir. 0.001% nötron salınımı ile her bin reaksiyonda sadece 1 nötron üretilir. 

Anötronik bir reaksiyon verimliliğine sahip olmasının yanısıra, yakıtı da oldukça yaygın ve boldur. Tek (ve malesef büyük) dezavantajı, reaksiyon oranının tepe noktasına 123 keV’de ulaşması. Yani gerekli olan sıcaklık bir D-D veya D-T reaksiyonunda ihtiyaç duyulandan 10 kat fazlası olan 1 milyar santigrat dereceye yakındır. Enerji hapsedilmesini sağlayacak manyetik alanlar da doğal olarak 500 kat daha iyi olmak zorundadır. Tokamak ve lazer odaklı reaktör modellerinin limitleri dışında olan bu reaksiyon için daha radikal farklılıklar gösteren Polywell ve Dense Plasma Focus sıkıştırma yöntemleri düşünülmektedir.



FÜZYON REAKSİYONLARI, He3 Döteryum (2H) – Helyum-3 (3He) Çevrimi

FÜZYON REAKSİYONLARI, D-He3 (Döteryum (2H) – Helyum-3 (3He)) Çevrimi
Reaksiyonda döteryum ve Dünya’da nadir bulunan helyum-3 izotopu birleşmektedir. Helyum-3’ün ne kadar nadir olduğunu anlatmak için, bu izotopu Ay yüzeyinden ve hatta Jüpiter’den toplanmasına dair fikirler olduğunu örneklememiz yeterli olur sanırız. 
Helyum-3 ayrıca Trityumun beta bozunması geçirmesi sonucu da oluşur. Daha önce de döteryum için yazdığımız gibi, uzayda hali hazırda asteroidlerde, kuyuklu yıldızlarda, gaz devlerinin halkalarında ve uydularında bolca bulunan buzdan döteryum elde edip, bu döteryumu nötron bombardımanına tutarak Trityum üretimi yapılabilir. Bu reaksiyonun bir diğer ve esas zorluğu ise reksiyonun en verimli noktaya ulaşması için 58 keV enerji girdisi gerekmektedir.

2H + 3He = 4He (3.6 MeV) + 1H [p+] (14.7 MeV)

Bu dönüşüm, D-T reaktörlerinde ikincil reaksiyon olarak gerçekleşebilir. Ancak sadece D-He3 reaksiyonu gerçekleştirecek bir reaktör, çoğunlukla Dünya dışından getirilecek stoklara dayanacağı için, en azından gezegenimizdeki kullanımı pek ekonomik olmayacaktır. Ancak Ay’da yeterli stok bulabilirsek, Ay üzerinde enerji üretimi ve teknolojimiz geliştikçe ve gaz devleri civarında enerji üretimi için vazgeçilmez olabilir. Tabi reaksiyonu başlatacak enerji ihtiyacı sorununun üstesinden gelebilirsek.  

D-He3 ayrıca yazımızın bir sonraki bölümünde bahsedeceğimiz füzyon roketleri için biçilmiş kaftan diye niteleyebileceğimiz bir reaksiyondur. Enerji ihtiyacının p-11B’ye göre düşük olması ve anötronik olması çok büyük avantajlardır.



FÜZYON REAKSİYONLARI D-D Döteryum (2H) – Döteryum (2H) Çevrimi

FÜZYON REAKSİYONLARI D-D [Döteryum (2H) – Döteryum (2H)] Çevrimi
Sadece döteryum kullanan bu reaksiyon, edinimi zor olan başka bir yakıt gerektirmemesi ile öne çıkan bir diğer araştırma konusudur. D-D reaksiyonu, sürdürülebilir “ateşleme” için gereken reaksiyon oranının tepe noktasına 15 keV değerinde enerji ile ulaşır. Bu D-T’den daha yüksek ve dolayısıyla daha zorludur. Bu reaksiyon eşit oranlarda iki farklı ürün verir;

50%: 2H + 2H = 3H [Trityum] (1.01 MeV) + 1H [p+] (3.02 MeV)

50%: 2H + 2H = 3He (0.82 MeV) + n (2.45 MeV)

Hydrogen_Deuterium_Tritium
Hidrojen ile, onun izotopları olan (fazladan bir ve iki nötrona sahip) döteryum ve trityum.
Reaksiyon sonucu üretilen Trityum ve Helyum-3, geri dönüştürülerek yüklü parçacık miktarı arttırılıp nötron miktarı azaltılacaktır. Şöyle ki; reaksiyon sonucu oluşan Trityum toplanabilirse, aksi taktirde oluşacak nötron salınımı oldukça düşük olur ve reaktör D-He3 reksiyonu devam ettirebilir. Bunun yanında Trityum D-T reaksiyonlarında kullanılır veya bozunup Helyum-3’e dönüşünce D-He3 reaksiyonlarında da kullanılabilir.

Anötronik Reaksiyonlar
Aşağıdaki reaksiyon çeşitleri nötron salınımı içermez ve çok daha verimlilerdir ancak zorlukları da bununla doğru orantılı artmaktadır. En büyük avantajları nötron kalkanlaması gerektirmemeleri ve direkt enerji dönüşümünü mümkün kılmalarıdır.



Füzyon Araştırmalarının Reaksiyonlar

 D-T [Döteryum (2H) – Trityum (3H)] Çevrimi
İşte şimdi dünyada kullanabileceğimiz ve üzerinde birçok araştırma-geliştirme yapılan bir çevrimden bahsedebiliriz. D-T en düşük enerjiye ihtiyaç duyan, en kolay reaksiyon tipidir. Yakıtlara bir bakalım;

Döteryum deniz suyunda metreküp başına 30 gram kadar bulunan oldukça yaygın bir izotoptur. Sadece Dünya’daki döteryum rezervlerini binlerce yıl füzyon reaksiyonlarında kullanabileceğimiz gibi, uzayda da diğer gezegenlerde, uydularda ve kuyruklu yıldızlarda da bolca bulunur bu hidrojen izotopu. Trityum yaklaşık 12 yıl yarı ömrü olan radyoaktif bir hidrojen izotopudur. Doğada fazla bulunmaz ve kozmik ışınların atmosferimiz ile etkileşimi sırasında üretilir. Şu anki teknolojimiz ile normal nükleer reaktörlerde de trityum üretimi yapılmaktadır. Yakın gelecekte ise füzyon esnasında açığa çıkan nötronların Lityum elementini bombalaması ile Trityum üretimi yapılacaktır (Dünya’daki bilinen Lityum rezervleri en az bin yıl yetecek miktardadır). D-D çevrimlerinde de trityum üretimi yapılabilir.

D-T Reaksiyonları şu şekilde gerçekleşir; 2H + 3H = 4He (3.517 MeV) + n (14.069 MeV)

Reaksiyon sonucunda açığa çıkan enerjinin 20%’si 3.5 MeV değerinde Helyum izotopu (alfa parçacığı) ve 80%’i 14.1 MeV değerinde nötrondur.

D-T, Tokamak tipi reaktörlerde kullanıma en uygun reaksiyon tipidir. Az sonra anlatacağımız D-D reaksiyonuna kıyasla daha yoğun oranda gerçekleşir ve reaksiyon oranının tepe noktası olan 13,6 keV enerji ile D-D’den daha düşüktür. Avantajları arasında diğer füzyon reaksiyonları gibi temiz ve güvenli olması yanısıra, teknolojik ve mühendislik olarak kolay olan bu döngünün dezavantajları şunlardır; Daha öncede yazdığımız gibi Trityum üretimi gerektirmektedir, bu sebeple “Lityum örtüsü” denen bir tabaka, reaktörde üretilen nötronlar ile bombalanarak Trityum üretecektir. Bu yöntemin de ayrı zorlukları vardır. Bir diğer dezavantajı da, nötronlar %80 enerji taşıyacağı için reaksiyonun enerjisinin beşte biri plazma içerisinde kalacaktır. Bu da “ateşlemenin” sürekliliğini zorlaştırmaktadır.



FÜZYON REAKSİYONLARI Karbon-Nitrojen-Oksijen CNO çevrimi

Eğer Güneş 1.5 kat daha büyük olsaydı ana yakıt döngüsü bu olacaktı. Karbon çevrimi olarak da bilinen bu reaksiyonda ağır bir atom yer yer helyumla birleşerek karbon, nitrojen ve oksijen izotopları arasında geçiş yapar ve bu süreç içerisinde 27.8 MeV’lik enerji açığa çıkartır.

Güneşte üretilen enerjinin sadece 1-2%’lik kısmı bu çevrimden gelirken, Sirius A yıldızı, büyük oranda CNO çevrimi enerjisi ile ışımaktadır. Tahmin edebileceğiniz gibi CNO, şu anki füzyon teknolojimiz için henüz mümkün olmayan bir çevrimdir.

FÜZYON REAKSİYONLARI / Proton-Proton Çevrimi

Güneşimizin kalbindeki iki reaksiyon çeşidine bakalım
Proton-Proton "p-p" Çevrimi
Yıldızları Anlamak yazı dizimizde detaylı olarak bahsettiğimiz gibi, güneşimizin kalbindeki ana reaksiyonlardan biri olan, ancak Dünya’da kullanmamıza pek uygun olmayan bir reaksiyon çeşididir. Güneşimizin çekirdeğindeki sıcaklık dahi,  protonların coulomb bariyerini klasik şekilde aşması için yeterli değildir. Ancak, kuantum mekaniklerini anlamaya başlamamız ile birlikte bu protonların quantum tünellemesi yolu ile birleştiğini keşfetmiş olduk.

Kuantum Tünellemesi Parçacıkların aradaki herhangi bir bariyeri aşıp, klasik fizik ile gidemeyecekleri bir yere gitmeleridir. Eski klasik fizik kuralları, parçacıkların bariyerleri aşacak enerjisi yoktur der. Ancak kuantum fiziği bize parçacıkların hem “parçacık” hem de “dalga” özelliklerine sahip olabildiğini göstermiştir. Böylece zaman zaman bir proton çevresinden enerji ‘ödünç’ alıp, bu enerji ile aradaki bariyeri aşacak bir olasılığa sahiptir. Bu hadise 1-3 nm veya daha ince bariyerlerde görülür. Beyinlerimizi daha fazla yakmadan, anlaması ve anlatması daha kolay olan füzyon konumuza geri dönelim

p-p döngüsü sadece kuantum tünellemesiyle işlediği için yavaştır. Tek bir protonun diğer bir proton ile füzyon reaksiyonu geçirmesi için bazen bir milyar yıl gerekebilir. Tünelleme yolu ile birbirlerine ulaşan protonların önündeki bir diğer engel de zayıf nükleer kuvvet etkileşimine ihtiyaç duymalarıdır ki, bunun da olasılığı azdır. Bu zayıf ihtimallere rağmen Güneş’teki ana reaksiyon tipi budur. Çünkü zayıf ihtimalin rahatlıkla yüksek ihtimale döneşebileceği trilyon x trilyon atom vardır. Sonucunda 4 proton birleşir, bir helyum çekirdeği (alfa parçacığı), biraz nötrino ve 26.73 MeV’lik enerji açığa çıkar.

Muz Kabukları Ayakkabıları parlaktır ve bakım yapar. – Toplum ve Bitkisel Tedavi

Muz Kabukları Ayakkabıları parlaktır ve bakım yapar. – Toplum ve Bitkisel Tedavi : Dolayısıyla muz kabukları ayakkabılarınız için harika bir...